
Pragma comes with the following export capabilities:

You can use Pragma to export Source Engine and Source 2 Engine assets for use in
modelling programs
Assets in Pragma can be exported in the Source Engine model/material/texture format

Fake PBR can be applied automatically for use in SFM
Automatic generation of ambient occlusion maps (if they don't exist)
Automatic re-scaling of the models to meters
Conversion to match Blender's coordinate system
Includes the rig, all of the animations and morph targets of the model
Conversion to standard normal maps (e.g. if self-shadowed bumpmaps are used)
Conversion of Source 1 assets with PBR settings
Automatic conversion of the textures to png, bmp, tga, jpg, hdr, dds, ktx or vtf
Automatic conversion of the textures to a RMA format
Works with maps / level geometry

If you want to export a model or material, the easiest way to do so is via the Filmmaker interface.
Simply open the model/material catalog, right click on the model icon, then click "Export asset":

If you want to export a different asset type, or need more control, you can use the export
command utility instead. To use it, start a game in Pragma first. You can either load a map (which
map doesn't matter), or run "map empty" in the console. Once the map has been loaded, you can
use the "util_export_asset" console command with the following parameters:

-model <modelName>: Exports the specified model. If a directory is specified, all models

Asset Import / Export
Export

Exporting Assets

https://wiki.pragma-engine.com/uploads/images/gallery/2021-04/pragma_2021-04-07_18-38-05.png

within that directory will be exported.
-texture <textureName>: Exports the specified texture(s). If a directory is specified, all
textures within that directory will be exported.
-material <materialName>: Exports the specified material(s). If a directory is specified, all
materials within that directory will be exported.
-map <mapName>: Exports the specified map(s). If a directory is specified, all maps within
that directory will be exported.
-export_images 1/0: If enabled, all textures of the asset will be converted to the specified
image output format and saved alongside the asset. Default: 1
-normalize_texture_names 1/0: If enabled, the exported textures will be renamed
according to their type (e.g. "textureName_normal") and will not keep their original name.
Default: 0
-image_format png/bmp/tga/jpg/hdr/dds/ktx: The format to use for exported textures.
Default: dds
-binary 1/0: If enabled, the model will be exported in the "glb" format, otherwise "glTF".
Default: 0
-verbose 1/0: If enabled, additional information will be printed to the console during the
export. Default: 1
-recursive 1/0: If enabled and a directory is specified as the asset, all assets from all sub-
directories will be exported as well. Default: 0

Models only:

-export_animations 1/0: If enabled, all animations of the model will be exported as well.
This may drastically increase the file size and loading times when importing the model into a
modelling program. Default: 1
-export_morph_targets 1/0: If enabled, will export all morph targets (flexes) of the model
as well. Default: 1
-export_skinned_mesh_data 1/0: If disabled, no skeleton, vertex weights or animations
will be exported. Default: 1
-embed_animations 1/0: If enabled, all of the animations of the model will be embedded in
the exported glTF file. When disabled, each animation will be exported as a separate file
instead. Default: 1
-full_export 1/0: If enabled, body groups of the model will be exported as well. Default: 0
-scale <scale>: The value by which to scale the exported meshes. Use 1 to keep the
original scale. Use 0.025 to convert the meshes to meters. Default: 0.025
-generate_ao 1/0: If enabled, will automatically generate ambient occlusion maps for the
model if it doesn't have any. Default: 0
-ao_resolution <resolution>: The resolution to use for the ambient occlusion maps if
"generate_ao" is enabled. Default: 512
-ao_samples <samples>: The number of samples to use for generating the ambient
occlusion maps if "generate_ao" is enabled. Default: 40
-ao_device cpu/gpu: Whether to use the CPU or GPU to generate the ambient occlusion
maps if "generate_ao" is enabled. Default: cpu
-merge_meshes_by_material 1/0: If enabled, all meshes that use the same material will
be merged. Default: 1

-enable_extended_dds 1/0: If enabled and the image format is set to dds, will enable
support for BC6 and BC7 compression using the DXT10 version of the format. Default: 0
-list_animations 1/0: If enabled, the model will not be exported and all available animations
of the model will be listed in the console instead. Default: 0
-animation <animName>: If specified, only this animation will be exported.
-format glTF/mdl: The output format for the model. If "mdl" is specified TODO
-game 1/0: Only has an effect if "format" is set to "mdl". TODO
-preview 1/0: If enabled, the model will be shown in the viewport. Default: 0

Exporting a material (including textures):

Exporting a texture:

Exporting a map:

Exporting a model:

(Make sure to remove the ".mdl" extension!)

Exporting a Source 2 model:

Batch-exporting all models in a directory and all sub-directories:

If you want to use Pragma to export Source Engine assets, you generally don't have to copy
any of the assets to Pragma, the Engine should be able to locate the assets automatically as
long as they're part of one of your installed Source Engine games on Steam.

Usage Examples

util_export_asset -material "brick/brick_1a" -verbose -image_format png

util_export_asset -texture "concrete/concrete_5_floor_3_psd_918fcd2d" -verbose -image_format

png

util_export_asset -map "gm_construct" -verbose -export_images 1 -image_format png -

generate_ao 0 -export_animations 0

util_export_asset -model "props_2fort/tank001" -verbose -image_format png -generate_ao 0

util_export_asset -model "characters/gman/gman" -verbose -image_format png -generate_ao 0

It is also possible to export a model with retargeted animations (i.e. export a model with the
animations of another model.):

To do so, you will have to set up a retarget rig in PFM's retarget editor first:

Once you have created the retarget rig, you can use the -retarget_source argument in the
util_export_asset command to export the model with the retargeted animations:

util_export_asset -model "props_2fort" -verbose -image_format png -generate_ao 0 -recursive 1

Exporting retargeted models

This section refers to PFM v0.4.3 and newer and may not be representative of older versions.

util_export_asset -model "e3assassin" -retarget_source "re5/jv1" -verbose -image_format tga -

generate_ao 0 -embed_animations 1

https://wiki.pragma-engine.com/uploads/images/gallery/2021-09/2021-09-24-21-16-05.gif

You can also use the command to export a model to the Source Engine .mdl format. To do so,
simply set the "format" parameter to "mdl":

This will automatically generate the QC and SMD files for the model, convert the textures to vtf,
convert the materials to vmt, as well as automatically compile the model using studiomdl. Pragma
will attempt to locate studiomdl automatically, but you can also specify which game's studiomdl
should be used:

This will use the studiomdl from TF2. The game name has to match the entry from
"Pragma/cfg/mounted_games.udm" (You can open the file in a text-editor).

If the model's materials use PBR, the exporter will also automatically apply fake PBR for use in SFM.

All of the model's animations will be included in the Source Engine model as well, however morph
targets are currently not supported.

Converting a model from Blender (or other modelling programs) is very simple. All you have to do
is export your model from Blender in either the glTF format, or the glb format and copy the
exported file to "Pragma/addons/imported/models". Then use the command above and replace the
model name with the name of the glTF/glb file (without the extension).

The approach for Source 2 assets is exactly the same as for Source 1 assets, with the exception of
maps. To export a Source 2 map, follow these steps (using Half-Life: Alyx as an example):

1. Open the map's vpk-file (steamapps/common/Half-Life Alyx/game/hlvr/maps) in GCFScape
2. Extract all of the files from the vpk to "Pragma/addons/imported/"
3. Run the "util_export_asset" command with the asset name pointing to the "vwrld_c"-file.

Exporting to Source Engine

util_export_asset -model "props_2fort/tank001" -format "mdl"

Most of the parameters listed above will have no effect when using the Source Engine mdl-
exporter!

util_export_asset -model "props_2fort/tank001" -format "mdl" -game "tf2"

Using Pragma to convert models from Blender to Source

Source 2

https://developer.valvesoftware.com/wiki/GCFScape

For example, for the map "a5_vault", you should use:

If you want to import a model from Blender (or other modelling programs), all you have to do is
export the model in the glTF or glb format and copy the exported file to
"Pragma/addons/imported/models". The model should automatically show up in the PFM model
catalog and it will automatically get converted (along with the textures) when used.

If you want to import a model (or material/texture) from Source or Source 2, you generally don't
have to do anything. All of your installed Source Engine games (assuming they're installed via
Steam) should be automatically detected and mounted by Pragma. In the rare event that this
doesn't work, you can try adding the mount path for the game to
"Pragma/cfg/mounted_games.udm".

Alternatively you can also simply extract the asset files to "Pragma/addons/imported/models" and
"Pragma/addons/imported/materials" respectively.

util_export_asset -map "a5_vault/world" -verbose -export_images 1 -image_format png -

generate_ao 0

Import

Source Engine / Source 2

Revision #17
Created 6 April 2021 18:32:48 by Silverlan
Updated 16 July 2023 08:17:24 by Silverlan

