
You can also find these build instructions on the Pragma repository on GitHub.

~50 GiB of disk space
CMake 3.21.4 or newer
Python 3.9.5 or newer

Visual Studio 2022 or newer

clang-14 or newer (Pragma is not compatible with gcc!)

Launch a command-line interface and clone the pragma repository (with submodules) into a
directory of your choice:

After that you can simply navigate to the pragma directory and run the python build-script, which
will automatically download all dependencies, configure CMake, and build and install the project
(this will take several hours):

Building Pragma

Build Requirements

Windows

Linux

Build Instructions

git clone https://github.com/Silverlan/pragma.git --recurse-submodules

python build_scripts/build.py --with-pfm --with-all-pfm-modules --with-vr

If you don't need the filmmaker, you can omit the --with-pfm --with-all-pfm-modules
arguments, which will significantly reduce the build time and the required amount of disk
space.

https://github.com/Silverlan/pragma#readme

Linux

Before running the build script, you will have to install the following packages:

Required for the build script

sudo apt-get install python3

Required for Pragma core

sudo apt install build-essential

sudo add-apt-repository ppa:savoury1/llvm-defaults-14

sudo apt update

sudo apt install clang-14

sudo apt install libstdc++-12-dev

sudo apt install libstdc++6

sudo apt-get install patchelf

Required for Vulkan

sudo apt-get -qq install -y libwayland-dev libxrandr-dev

sudo apt-get install libxcb-keysyms1-dev

sudo apt-get install xcb libxcb-xkb-dev x11-xkb-utils libx11-xcb-dev libxkbcommon-x11-dev

Required for GLFW

sudo apt install xorg-dev

Required for OIDN

sudo apt install git-lfs

Required for Cycles

sudo apt-get install subversion

Required for Curl

sudo apt-get install libssl-dev

sudo apt install libssh2-1

Required for OIIO

sudo apt-get install python3-distutils

Once the build script has been completed, you should find the build files in pragma/build , and the
install files in pragma/build/install . The install directory should contain everything you need to
run Pragma.

If you make any code changes to the core engine code, you can build the pragma-install target to
build them. This will also re-install the binaries.

If you make any code changes to a module, you will have to build the module build target first,
and then build pragma-install afterwards.

Running the build-script with the arguments above will build and install Pragma and the Pragma
Filmmaker with all dependencies. Alternatively you can also configure the build to your liking with
the following parameters:

Parameter Description Default

--help Display this help

--generator <generator> The generator to use. Visual Studio 17 2022 (On Windows)
Unix Makefiles (On Linux)

--c-compiler [Linux only] The C-compiler to use. clang-14

--cxx-compiler [Linux only] The C++-compiler to use. clang++-14

--with-essential-client-modules
<1/0>

Include essential modules required to
run Pragma. 1

--with-common-modules <1/0>
Include non-essential but commonly
used modules (e.g. audio and physics
modules).

1

Build Customization

--with-pfm <1/0> Include the Pragma Filmmaker. 0

--with-core-pfm-modules <1/0> Include essential PFM modules. 1

--with-all-pfm-modules <1/0>
Include non-essential PFM modules
(e.g. chromium and cycles). 0

--with-vr <1/0> Include Virtual Reality support. 0

--build <1/0>
Build Pragma after configurating and
generating build files. 1

--build-config <config> The build configuration to use. RelWithDebInfo

--build-directory <path>
Directory to write the build files to.
Can be relative or absolute. build

--deps-directory <path>
Directory to write the dependency
files to. Can be relative or absolute. deps

--install-directory <path>
Installation directory. Can be relative
(to build directory) or absolute. install

--verbose <1/0> Print additional debug information. 0

--module <moduleName>:<gitUrl>
Custom modules to install. Use this
argument multiple times to use
multiple modules.

Example for using the --module parameter:

If you want to create your own binary module, please check out the article on binary modules.

--module pr_physx:"https://github.com/Silverlan/pr_physx.git"

Revision #15
Created 5 December 2022 09:43:43 by Silverlan
Updated 5 December 2022 17:11:33 by Silverlan

https://wiki.pragma-engine.com/books/pragma-engine/page/binary-modules

