
[WIP] Animating and Animating Techniques (such as retargeting)

Basics
Inverse Kinematics
Expressions and Drivers
Retargeting

Animating

Basics

To be able to animate using inverse kinematics, you have to set it up first. Luckily doing so is fairly
straight-forward:

1. Create an articulated actor in your scene
2. Expand the bone list actor > Components > animated > bone in the actor editor

3. Right-click the bone for which you want to add an IK chain. This bone will be the effector.
Now choose Add IK Control > <ParentBone> from the menu. An IK chain will be created,
which will include the <ParentBone> , the effector and all of the bones in-between in the
hierarchy.

4. Scroll down to the bottom of the Components list and you should find a new entry called
pfm_ik . Here you will find all of the effectors you've added:

5. Use the viewport transform modes to move the effector position and you should see the IK
in action.

Inverse Kinematics

The IK configuration data is model-dependent and project-independent. If you use the model
of the actor that you've added a IK chain for in another project (or the same one), the pfm_ik
component of the new actor should already list all of the IK chains you have created for the

https://wiki.pragma-engine.com/books/pragma-filmmaker/page/actor-editor#bkmrk-articulated-actors
https://wiki.pragma-engine.com/uploads/images/gallery/2022-07/pragma-2022-07-24-15-07-17.png
https://wiki.pragma-engine.com/uploads/images/gallery/2022-07/pragma-2022-07-24-15-13-09.png

model previously, i.e. you only have to create them once per model.

The IK system currently does not support limits. This means that, for instance, an arm can
bend in ways that wouldn't be possible in real life.

Any animatable actor property (color, radius, position, etc.) can be animated with a math
expression (Similar to SFM's expression operators). The implementation is based on the high-
performance exprtk library, which includes support for:

Logical operators (and/or/not/etc.)
Conditions (if/ternary/etc.)
Loops (for/while/etc.)
Vectors

As a basic example, let's say you want to animate the position of your actor, so you move it to
[0,30,0] at timestamp 0, [0,50,20] at timestamp 1 and [30,0,-20] at timestamp 2. You can then
apply the math expression value *2 to the property, which will double the values, meaning your
actor will move from [0,60,0] to [0,100,40] and then to [60,0,-40] instead.

Here are some other basic examples:

var newValue[3] := {0,value[1],0}; return [newValue]; : Returns [0,value.y,0], which means the
actor will only move on the y-axis.
var newValue[3] := {time *100,0,0}; return [newValue]; : The channel value will be ignored, and
the actor will move on the x-axis depending on how much time has passed since the start
of the animation.
var f := time /duration; var newValue[3] := {sin(f *pi *2) *100,0,cos(f *pi *2) *100}; return [newValue];
The channel value will be ignored, and the actor will move in a circular motion depending
on the time passed.

These are the variables available for use with math expressions:

value: The current value
time: The current time in seconds
timeIndex: The index into the times array of the channel for the current timestamp.

Expressions and Drivers
This article refers to PFM v0.4.3 and newer and may not be representative of older versions.

Math Expressions

Examples

Inputs

https://developer.valvesoftware.com/wiki/SFM/Expression_Operator
http://www.partow.net/programming/exprtk/
http://www.partow.net/programming/exprtk/

startOffset: The channel's start offset in seconds.
timescale: The channel's time scale.
duration: The duration of the channel (i.e. max time value in the times array).

Constants:

pi
epsilon
inf

All built-in exprtk functions
float noise(float v1,float v2,float v3) : Perlin noise.
float[X] value_at(float time) : Returns the value at the specified timestamp. The return value
is either float , float[3] or float[4] , depending on the channel value type.
float sqr(float v) : returns v *v
float ramp(float x,float a,float b) : returns (a == b) ? a : (x -a) /(b -a)
float cramp(float v1,float v2,float v3) : returns clamp(ramp(v1,v2,v3),0,1)
float lerp(float x,float a,float b) : returns a +(b -a) *x
float clerp(float 1,float v2,float v3) : returns clamp(lerp(v1,v2,v3),v2,v3)
float elerp(float v1,float v2,float v3) : returns ramp(3 *v1 *v1 -2 *v1 *v1 *v1,v2,v3)
float rescale(float x,float xa,float xb,float ya,float yb) : returns lerp(ramp(x,xa,xb),ya,yb)
float crescale(float v1,float v2,float v3,float v4,float v5) : returns
clamp(rescale(v1,v2,v3,v4,v5),v4,v5)
print(...) : For debugging purposes, prints the specified arguments to the console.

q_from_axis_angle(float[3] axis,float angle,float[4] out)
q_forward(float[4] quat,float[3] out)
q_right(float[4] quat,float[3] out)
q_up(float[4] quat,float[3] out)
q_slerp(float[4] q0,float[4] q1,float factor,float[4] out)
q_lerp(float[4] q0,float[4] q1,float factor,float[4] out)
q_dot(float[4] q0,float[4] q1)
q_mul(float[4] q0,float[4] q1,float[4] out)
q_inverse(float[4] quatInOut)
float q_length(float[4] quat)

Base Functions

Quaternion Functions

Contrary to SFM's expression operators, PFM's math expressions cannot reference anything
outside of the animation channel for the property it's assigned to. To create dependencies
between properties, you need to use animation drivers instead.

http://www.partow.net/programming/exprtk/
https://wiki.pragma-engine.com/books/pragma-filmmaker/page/expressions-and-drivers#bkmrk-animation-drivers

Animation drivers are similar to math expressions, with a few key differences:

Lua expression instead of a math expression
Can be used to create dependencies between arbitrary properties (this is their primary
purpose)
Similar to Blender's driver system
Slower to compute than math expressions, use sparingly

Since animation drivers are Lua-based, that means you have the entire Lua API available, making
them much more powerful tools compared to math expressions. Their purpose is to animate a
property programmatically with dependencies to other properties. To do so, animation drivers can
have input variables, which can be references to actors, components or component properties.

Changing the color of a light source depending on its distance to an actor (red = actor is
close, green = actor is far away):

Animation Drivers

Examples

Animation drivers cannot be created through PFM yet, so the following are Lua-based
examples. These may seem a little daunting, but once the system is integrated into the
interface, drivers will be much easier to use.

local actorId = "327b5bb8-74ae-400e-bbf7-61a2ad2020d3" -- Id of the actor for whom we check the distance
local expr = [[
	local dist = trLight:GetDistance(trActor)
	return Color.Red:Lerp(Color.Lime,math.clamp((dist -120) /150.0,0.0,1.0)):ToVector()
]]
lightSource:AddDriver(
	ents.COMPONENT_COLOR,"color",
	game.ValueDriverDescriptor(expr,{
 	-- 'trActor' variable referencing the transform component of the actor
 	["trActor"] = "pragma:game/entity/ec/transform?entity_uuid=" .. actorId,
 	
 	-- 'trLight' variable referencing the transform component of the light
 	["trLight"] = "pragma:game/entity/ec/transform"
 })

https://docs.blender.org/manual/en/latest/animation/drivers/introduction.html
https://wiki.pragma-engine.com/books/lua-api/page/introduction
https://wiki.pragma-engine.com/books/pragma-filmmaker/page/actors-and-components#bkmrk-components

Making an actor always face the camera:

)

local camId = "6f964743-faa6-4b2b-b781-41a258e2f7d1" -- Id of the camera actor
local expr = [[
	local angToCamera = self:GetAngles(trCam)
	return EulerAngles(0,angToCamera.y,0)
]]
actor:AddDriver(
	ents.COMPONENT_TRANSFORM,"angles",
	game.ValueDriverDescriptor(expr,{
 	-- 'trCam' variable referencing the transform component of the camera actor
 	["trCam"] = "pragma:game/entity/ec/transform?entity_uuid=" .. camId
 })
)

https://wiki.pragma-engine.com/uploads/images/gallery/2021-09/pfm-animation-driver-1.gif
https://wiki.pragma-engine.com/uploads/images/gallery/2021-09/pfm-animation-driver-2.gif

Retargeting

