
Binary modules allow you to change or extend the behavior of Pragma without having to change
the core source code. Binary modules are written in C++ and loaded during runtime using Lua
(with some special exceptions). Some example modules are:

pr_chromium: Adds an integrated Chromium-based Web Browser to Pragma
pr_openvr: Adds virtual reality support to Pragma
pr_bullet: Adds support for the Bullet physics engine to Pragma
pr_physx: Adds support for the PhysX physics engine to Pragma
pr_curl: Adds support for the curl library to Pragma
pr_sqlite: Adds SQLite support to Pragma

If the binary module is available on GitHub and has at least one release, you can use the following
console command in Pragma to install the module directly:

For instance, if you want to install the pr_curl module, simply run install_module Silverlan/pr_curl
in the console, which will automatically download the module and install it.

Alternatively, if a binary module comes with prebuilt binaries, you can simply extract the archive
to your Pragma installation directory, the file structure in the archive should ensure that its placed
in the correct location. Simple modules that consist of a single library file can usually be found in
the "modules" directory, while more complex modules (like chromium) reside in their own sub-
directory within "modules".

The module can then be loaded with a simple Lua-script:

Binary Modules

Installing Modules

install_module <GitHubUser>/<RepoName>

local moduleName = "chromium/pr_chromium"

local result = engine.load_library(moduleName)

if(result ~= true) then

https://github.com/Silverlan/pr_chromium
https://github.com/Silverlan/pr_openvr
https://github.com/Silverlan/pr_bullet
https://github.com/Silverlan/pr_physx
https://github.com/Silverlan/pr_curl
https://github.com/Silverlan/pr_sqlite
https://github.com/Silverlan/pr_curl

The module name is the path to the binary file, without the "modules/" prefix and without the file
extension. On Linux the module file also has the "lib" prefix, which has to be omitted as well. For
instance, if the module filename is "modules/curl/libpr_curl.so", then the module name should be
"curl/pr_curl".

If you want to build a module manually, you'll have to first build Pragma. You can then add the
module to the build instructions by using one of the following methods:

Open pragma/build_scripts/user_modules.py in a text-editor and follow the instructions to add your
module.

After that, simply re-run the build script.

You can also add the following option when running the build script:

--module <name>:<gitUrl>

For instance, if you want to add the pr_chromium module to the build:

--module pr_chromium:https://github.com/Silverlan/pr_chromium

(You can use the --module argument multiple times if you want to add more than one module.)

 console.print_warning("Failed to load \"" .. moduleName .. "\" module: " .. result)

 return

end

Building Modules

Method 1) (Recommended)

Tip: You can use the --rerun option to make the build script re-use the options used in the
previous build.

Method 2)

https://github.com/Silverlan/pragma#build-instructions

Once the module has been added to the build, you can simply build the pragma-install target. It
will build the module and install it automatically. You should then be able to find the module within
the "modules" directory of the pragma installation folder.

Setting up your own custom module is very simple and only takes a few minutes using the
Pragma module template repository on GitHub, which also includes workflows for automated
builds and releases.

To do so, go to the template repository and create a new repository from it:

You can choose whatever name you want for the repository, but for consistency it is recommended
that it should have the same name as the module, which means:

It should start with the "pr_" prefix
It should be all lowercase
It should only contain letters and underscores

Some examples are: "pr_chromium", "pr_bullet", "pr_audio_fmod", etc.

Next click "Create repository from template" to generate the repository.

The generated repository now contains a bunch of template files, which still need to be initialized.
For that, you will first have to enable write permissions for workflows in the repository settings:

Custom Modules

https://github.com/Silverlan/pr_module_template
https://wiki.pragma-engine.com/uploads/images/gallery/2022-12/firefox-2022-12-05-13-25-40.png

Next, open the file "template_pragma_module.json" on GitHub and edit the values within:

name: A pretty name, which will appear in the generated readme.
module_name: The internal name of the module (i.e. the name of the CMake target and the
binaries). This name should always start with the prefix pr_ and always be lowercase. It
should match the repository name if possible.
install_directory: The directory where the module should be installed to, relative to the
Pragma installation. Please choose this value carefully:

If you know your module is going to be a single binary with no additional files, it's
recommended to leave this value at the default ("modules/").
If your module requires additional files, it's recommended to change this value to a
sub-directory, e.g. "modules/<moduleName>/".
If your module requires Lua-scripts or asset files, it's recommended to change this
value to an addon path, e.g. "addons/<addonName>/modules/<moduleName>/".

release_directory: The directory that will be used for the GitHub releases. This value
usually depends on the install_directory:

If the install_directory is the default ("modules/"), leave this value empty. In this case
only the binary file will be added to the GitHub release.
If the install_directory is a sub-directory in "modules/", set this value to the same sub-
directory (i.e. the same value as install_directory).
If the install_directory points to an addon, set this value to the addon path (e.g.
"addons/<addonName>/").

https://wiki.pragma-engine.com/uploads/images/gallery/2023-02/firefox-2023-02-02-05-49-17.png
https://wiki.pragma-engine.com/uploads/images/gallery/2022-12/firefox-2022-12-05-13-32-17.png

Example:

When the module has been built, the binary will be located in
"pragma/addons/chromium_browser/modules/chromium/pr_chromium.dll" (or "libpr_chromium.so"
for Linux).

The GitHub release will contain all files that are within "pragma/addons/chromium_browser/".
Users will be able to simply extract the release over their Pragma installation to install the module.

Once you have edited the values in the json-file, commit your changes. This will trigger a workflow
which will initialize the repository with your values, which should take about two minutes. Simply
refresh the page a few times, once you can see the following icons at the top of the readme, it
means the initialization was completed:

The initialization will also trigger the automated build workflows, which may take a few hours to
run. Once they have completed, the two icons should turn green, and you should find the compiled
binary files available for download for both Windows and Linux in the "Releases" section of the
repository.

The build workflows will automatically trigger whenever you push any new commits to the
repository and the release binaries will be updated every time. If there are any errors during the
build process, the icons will say "failing" again, and you can check the workflow log for more
information on what caused the failure.

Once you've set up the repository, you can follow the instructions in the section about building
modules to add the module to the pragma build.

If your module has reached a state that can be considered "stable", you can publish a stable
release. To do so, wait for the regular build workflows to complete, then go to the "Actions" tab of

{

 "name": "Chromium",

 "module_name": "pr_chromium",

 "install_directory": "addons/chromium_browser/modules/chromium/",

 "release_directory": "addons/chromium_browser/"

}

Stable Releases

https://wiki.pragma-engine.com/uploads/images/gallery/2022-12/firefox-2022-12-05-13-35-57.png

your repository and select the "Create Stable Release" workflow, enter a version number and click
"Run workflow":

This workflow should only take a minute, as it just publishes the latest binaries as a new release.

You can find a simple test Lua-script in the "examples" directory of your module. Follow the
instructions in the commented section of the script to install and run it to test the module.

If your module requires additional steps (such as downloading and building external dependencies)
before it can be built, you can add those steps to the python script in "build_scripts/setup.py". This
script will be executed automatically whenever the Pragma build script is run.

Testing

Advanced Building

https://wiki.pragma-engine.com/uploads/images/gallery/2022-12/firefox-2022-12-05-14-26-24.png

By default the module binary file will be installed to the "modules" directory of the Pragma
installation. If you want to change this behavior, you can do so by editing the "CMakeInstall.txt"
file.

Advanced Installation

Revision #19
Created 5 December 2022 09:43:33 by Silverlan
Updated 1 November 2023 18:17:24 by Silverlan

